

A Dissertation on the subject of procedural modeling of railroads and creating procedural railroad
switches.

Name: Freek Hoekstra
Supervisor: Kim Goossens
Student ID: 072130

Track: Visual Artist
Date: 20 June 2011

 Period: block C & D
Number of ECTS: 21

NHTV International Game Architecture and Design

The Academy of Digital Entertainment
Breda University of Applied sciences

 2

Abstract:

In this paper a method is presented for creating curve-based procedural railway systems that
automatically generate switches from any number of rough input curves, the goals being to minimize
the amount of input required by the user.

To create the aforementioned switches, a spherical intersection is made at every curve intersection on
the original input curves (which only need to intersect to work) a new set of curves are then created
inside this gap, by using the intersection points between the sphere and the original curves together
with a calculated intersection point.

Finally the procedure sweeps profile curves along the generated curves as well as copies objects
along the curves in order to generate the final geometry, with no artists intervention required.

Table of Content

Abstract: ... 2
Table of Content .. 2

1. Introduction .. 3

1.1 Previous work: ... 3
1.2 Goals and challenges .. 3
1.3 Input .. 3

2. Curve generation. .. 4
2.1 The graph: ... 4
2.2 Resulting curves: ... 5
2.3 Detailing the track ... 5

2.3.1 Creating the number of tracks ... 5
2.3.3. Creating the rails ... 5
2.3.2 Creating the electrics ... 5

3. Breaking down the network ... 6
3.1 Creating the portals and electrics.. 6

3.1.1 Input curves: .. 6
3.2 Portal Creation .. 7

3.2.1 Reversed vertical setup ... 7
3.3. Creating the electric cables .. 7
3.4 Creating the switch portals .. 8

3.4.1 Extending the curves ... 8
3.4.2 Placing the cable suspenders .. 8

4. Curve tangency ... 8
4.1 Generating tangent curves .. 9

4.1.1 Creating the curve normals .. 9
4.1.2 The lines .. 9

4.2 Creating the final curves ... 9
5. Placing the ties .. 10

5.1 Preparing the curves ... 10
5.1.1 Isolating the proper curves .. 10

5.2 Creating the Ties ... 11
5.3 Combining the results: .. 11

6. Combining the Results .. 12
7. Limitations and constraints .. 14

7.1 guidelines .. 15

8 Literature... 16

8.1 Tutorials ... 16
8.2 Technical ... 16
8.3 Reference .. 16

1. Introduction

As computer graphics keep increasing in visual
quality the amount of artists needed to detail
the world increases year after year.
Procedural modeling is a method of creating
geometry that allows artists to generate high
resolution geometry with minimal input, by
making the computer generate the geometry
according to rules, parts of the production
process can be automated, enabling faster
production times and greater flexibility.

Traditionally every change to the layout of the
environment forces an artist to go back in and
fix any problems that may have arisen. With
the increasing level of detail (which can be
observed, among others, in the Unreal series)
this is becoming an increasing problem. While
possible to manually update all models and
environments constantly, there are numerous
situations where this is extremely undesirable.
For instance, manually exchanging the bolts of
a bridge, or changing the length of its span, the
latter likely requiring a complete remodeling of
the asset.

As changes always occur in a development
process, reducing the amount of work that
needs to be redone is a constant priority.
By generating geometry by a set of “rules”
instead of traditionally modeling and placing
props by hand, the artists never have to throw
away work. Modifying the input geometry will
result in the computer updating the entire
model/world automatically. For the bridge this
means that with procedural modeling the artist
only modifies the input bolt and changes the
length of the input geometry to make the entire
bridge update automatically in mere seconds.

Procedural technology is applicable to almost
every process of game creation. For example,
levels can be detailed procedurally allowing
designers to make changes until the last
minute without ever having to worry about
artists having to redo or throw away work,
allowing for more and longer iteration.

1.1 Previous work:

With the increasing demand of high detail
environments, lots of research is being done
on the field of procedurally generating terrain,
procedural texturing and more recently,
generating procedural layouts of cities.

On a smaller scale adaptive geometry between
surfaces and along curves is being heavily

researched. Also procedural buildings have
become a common subject of research.

Fully procedural solutions for generating levels
have been researched and used in commercial
games like Diablo 1 and 2 and certain strategy
games, up to entire galaxies as early as in
1984 by Elite.

1.2 Goals and challenges

With the procedural railroad project the primary
objective was to create a way to generate
tangent intersections automatically, requiring
no intervention from the artists. This paves the
way for a very controllable environment
creation tool by allowing the user to modify and
control the shape and look of the procedure
very precisely (something not always possible
in a city generator). This enables a very fast
workflow for creating procedural environments,
but still allows for environments that very
closely mimic the designers specifications
without being too labour intensive or too
random.

1.3 Input

For this procedural railroad system the artist
has to deliver one or more curves that may or
may not be intersecting. At every intersection a
switch will be created and the entire railroad is
detailed automatically.

Input:

Output:

Additionally the artist is be able to control
variables, altering the way the railroad looks

 4

2. Curve generation.

The following image accurately describes the
way the procedure creates the switch curves in
a simplified manner. The following section will
describe roughly how I came to this solution
and how it works:
To create the switch curves are required for
the railroad. First the two original input curves
are intersected, creating an intersection point

(purple dot in the centre).

Onto this point a sphere is copied, which is
then used to cut the original curves. The points
at which the sphere intersects the curves are
selected and used as a start/end point for the
newly generated curves (the red arrows).

Two of the intersection points are selected by
deleting one of the three. These will form the
start and the end point of the curve. Merging
the two points with the original intersection
point (purple) provides 3 points on a row. A
new Nurbs curve is created. That results in an
(almost) tangent curve. The curve is checked
for acuteness and if this is the case removed.
The process is repeated until all curves are
processed and the two correct curves remain.

2.1 The graph:

Another way to visualize the procedure is by
looking at the general tree setup. This is a
simplified version of the actual graph used to
create the curves but provides a clearer image
of what every portion does:

The graph has two outputs. One part will feed
the normal “standard” rail procedure, while the
other will feed into the more complex switch
detailing procedure. The two procedures are
separated because the switch procedure is far
more complex as it must among other things
prevent intersection from occurring between
Ties as demonstrated below:

Note the intersection between the beams.

 5

2.2 Resulting curves:

After the curves have been processed the
resulting curves look similar the image below:

The curves depicted above form the basis for
the rest of the procedure. They are utilized to
generate and or place almost all parts of the
railroad. The blue curves are the original
curves as drawn by the artist minus the
intersections. These will receive the normal
detailing procedure.

The white curves are switch curves as
generated by the procedure within the “gap”
inside each spherical intersection. It will
receive more complex treatment as detailed in
chapter 3.

2.3 Detailing the track

By continually using lines to produce and place
the assets the procedure is kept controllable at
all times even though the result is complex.
Changing distance or size of an element is
always easy as it just means changing one
variable: the length of the corresponding line.

2.3.1 Creating the number of tracks

After using a refine node so the curves are
optimized unnecessary points are removed
based on the curvature, the curve is swept.

The distance between the lines is controlled by
the width of the line that is being swept. After

sweeping the lines a skin node is used to
connect the points and create continuous lines.

Along these curves a number of profiles will be
swept to create the ballast, and after
resampling to an even distance ties are copied
onto each point.

Swept ballast and copied ties:

2.3.3. Creating the rails

To create the rails another line with the railroad
width is swept along the curve. it is finished by
sweeping a profile curve (the cross-section of
a rail) along the length of the curves.

2.3.2 Creating the electrics

To create the portals the curve from chapter
(2.2) is resampled to get an even distribution of
points along each curve. At every point a portal
gets created, and across every span an
electric cables are created

Example of portals and electrics. This process
will be elaborated on in chapter 3.

3. Breaking down the network

After explaining briefly how the objects are created on the normal rails the more complex switches will
be treated. Above is a simplified overview of the entire procedure, starting from the input curves, all
the way down to the final merge. The procedure can be split up into 4 modules from left to right:

1- creating the railroad curves (top nodes).
2- creating the rails and ballast.
3- creating the ties, portals and electrics for the normal curves.
4- creating switch ties.
5- creating the electrics and portals for the switch curves.

As mentioned the curves are treated separately, and at the final node the results merged. The top
node (create switch curves) is the one covered in chapter 2.1. Not all nodes will be covered due to the
amount of information processed. However, every node represented above is named by the action
that in reality is being processed by a collection of nodes to give a better understanding of the
procedure.

3.1 Creating the portals and
electrics

The following part will discuss in detail how the
portals were created starting from the input
curve. The portal creation is different from the
most other parts of the procedure as it is a
different type of structure and therefore cannot
be swept.

3.1.1 Input curves:

To create the portals the curve generated at
chapter 2.2 (create switch curves node) is

utilized. There is a single portal for any number
of tracks thus 2.3 is only used for the electrics.

The curve is resampled to an even distance
using a for loop and a resample node. It
determines the length of each curve and
divides it by the desired length variable.

arclen("../inputcurve",0,0,1)/ch("../resample_distance")

This generates a curve with equal size
segments along each individual curve,
preventing “double placement” near the ends
of curves.

 7

3.2 Portal Creation

On each point of the curve a copy of the portal
is placed. The height and width of the portal
are determined by the variables used to create
the rest of the railroad, freeing the artists from
having to manually synchronize the size of the
portal with the rest of the procedure.

For instance the width is determined by:
track_width + ((rail_width*0.5)*number_of_tracks.)+offset

This creates the railroad while allowing the
artist to control the offset, providing full control
with just one variable.

3.2.1 Reversed vertical setup

For the height a similar system is utilized.
The procedure is built from the ground up.
Not the other way around, as increasing the
height of the beam would result in the train not
getting power any more. To determine the
height of the electric cables the height of the
train is added to height of the rail, and to that
the cable sagging the beam is placed on top.

More cable sagging causes the rest of the
system to be raised making sure the system
always remains intact. The system always
adjusts automatically to any changing variable
without compromising another. For instance, if
the sagging of the cables increases the
support beam moves up and the suspension
structure adjusts to compensate, making sure
the train still fits below.

To finally finish the portal a ray SOP is used
from the two outer points and projected down
towards the ground. Lines are drawn to the
ground (or 0 height if none is present) and a
profile swept along to draw the pillars.

3.3. Creating the electric cables

Curve (2.2) is taken and segmented with an
even distance resample locked at the same
settings as the portals. This way the cables
always match up from portal to portal.

To create the electric cables a single section of
the curve is selected to be labelled wire. The
Wire curve is resampled to have 3 sections (or
4 points) and the middle two are dragged
down. Using a convert the polygonal curve is
converted to a NURBS curve, making it
smooth. The curve is resampled again to have
more points and a transform is added with
controls for scaling (more or less sagging).

Furthermore another procedure is also run on
the wire. It is resampled to have the same
number of points as the one treated before.

The two are merged together, and using a skin
node the lines are connected to form a mesh.
Finally a wire SOP is used to give thickness to
the lines and the electric cable is complete.

3.4 Creating the switch portals

The switch portals are setup in a similar way to
the normal portals. The vertical setup is
identical, but creating spans that automatically
stretch across spreading tracks required some
different solutions. To create the spans first the
switch curves need to be sorted and the
middle two need to be removed. After this is
complete an average curve can be created.
This is done by using a Point SOP with the
following expression:

$TX2*0.5+$TX*0.5
$TY2*0.5+$TY*0.5
$TZ2*0.5+$TZ*0.5

This averages the points and creates a curve
which can be used to copy a line onto. These
copies are intersected with the outer switch
curves (generated above) to generate the
locations where the pillars will stand.

3.4.1 Extending the curves

This is the basis of the automatically
increasing width. However to prevent the
pillars from intersecting with the railroad itself
the curve needs to be extended. Therefore a
normal is created on each point which is later
used to extend the curve.

To generate the new normal pointing along the
direction of the curve Inside the point node the
following expression is used in the normal
generation tab

$TX2-$TX
$TY2-$TY
$TZ2-$TZ

As the point numbers have been switched
(point 0 has become point 1 and vice versa)
subtracting the position of point 0 of input 1
with the position of point 0 of input 2 results in
a vector (stored as a normal) between the two
points. The normals are normalized (they are
presently not unit length) and the points are
displaced outwards along the negative

direction (the normals are pointing inwards not
outwards) by another point node as per the
following expression:

$TX-$NX*((ch("../../track_dist")/2)-ch(“../portal_offset”))
$TZ-$NZ*((ch("../../track_dist")/2)-ch(“../portal_offset”))

The track distance is halved as the
displacement happens on both points.
Therefore half a displacement on both sides
suffices. The portal offset is driven by the
same offset and allows the artist to increase or
decrease width of the portals with the same
control.

3.4.2 Placing the cable suspenders

Not only must the width of the portal now be
calculated, the locations where the suspension
structures must be placed to properly suspend
the electric cables must also be computed.
Using the original input curves of 2.2 and
intersecting them with the curves generated for
the portal beams, intersection points are
generated. Normals are created and on the
points the suspenders are copied.

Note: The second portal is wider than the first.

4. Curve tangency
Although the basis of the procedure is now
functional and generates a curve interpolating
between the 3 intersection points there is still a
tangency issue. It is normally not very visible
when just displaying the curves themselves,
but when multiple tracks are swept along it the
problem becomes apparent:

A fairly extreme example of a tangency issue.

 9

The tangency issue occurs because the 3
point curve generated in chapter 2 does not
take into account the direction (last normal) of
the original curve. Therefore the curves no not
have the same normal. The curve processed is
only tangent if both curves enter in a straight
line towards the intersection point. This is a
rare case as they in reality are often curved,
resulting in an inconsistency in the normals,
which finally results in the issue displaced on
the previous page.

4.1 Generating tangent curves

To ensure tangency, a new intersection point
is calculated based on the direction of the last
normal of each point on each curve. To
calculate the intersection two straight lines that
extend along the negative direction of the last
normal of each curve are created (as per the
method discusses in 3.4.1). Being straight they
are perfectly tangent with the last point of the
input curve. The lines are intersected providing
the point in space where the curves would
have intersected would they have continued on
in a straight line.

This matches our constraint of the 3 point
curve being tangent only with straight lines. As
the intersection point through which it
interpolates is now based on straight lines the
resulting NURBS curve is also tangent at both
ends.

4.1.1 Creating the curve normals

To determine the normal of the last point of
every curve we splice in from the original
spherical intersection volume break and the
point sort (as discussed in chapter 2.2), which
is still sorting from the original intersection
point.

Deleteing every point except for the first 6
points: 3 primitives with 6 points remain.

A for loop is created at which point we delete
the two other primitives and create the normals
as described in 3.4.1.

4.1.2 The lines

In order to create the tangent lines the
secondary point is deleted and the first point is
displaced along the normal:
$TX-$NX*ch("../switch_size")*2
$TY-$NY*ch("../switch_size")*2
$TZ-$NZ*ch("../switch_size")*2

This moves the point exactly to the opposite
end of the spherical intersection, and by using
the switch_size attribute the line scales with
the size of the switch selected by the user.
The coordinates are transferred to a line and
the loop ends to reveal 3 intersecting lines.

Deleting one line based on the stamp number
the intersection is calculated between two of
them and the intersection point is stored. This
point is the point where the two original curves
would have intersected were they to continue
straight from the last normal.

4.2 Creating the final curves

A new curved line can now be generated. 3
points are taken from the volumebreak / sort
(spherical intersection) and two points
selected. These points are merged with the
new calculated intersection points and sorted
(shift +1) resulting in a usable 0-1-2 point
order.

Finally a point SOP is used to transfer the
coordinate to a 3 point curve. Because the new
intersection point is now placed exactly along
both normals the tangency problem has been
resolved.

Although the previous method yields similar
results the generated curves are now much
closer to tangent. After using the dot product is
used to delete the acute curve and the results

 10

are swept. It is visible that the result is much
more accurate.

The result is as before a system that can
generate switches at any given angle, but with
much better matching tangency, as is clearly
visible in the image below:

To fix the last bit of overlapping a Fuse node is
used, (not used on the image above for
demonstration purposes) fusing the points
together and creates a seamless mesh.

5. Placing the ties

As before there is a great difference in object
creation and placement for the “normal” rails
and switches. For the normal rails placing the
ties is a simple matter of copying the geometry
onto the points.

To replicate real-world construction of ties on
switches however, the ties that would normally
intersect (if just copied on every point) need to
be replaced. A new procedure for placing must
be designed taking into account intersections
and prevent any intersecting geometry.

The following image shows the situation as is:
intersecting geometry, as the geometry is
placed by resampling the curve and copying a
tie on every point.

Intersection needs to be prevented and
replaced by beams crossing the entire span,
resulting in the image below.

Ties stretching across to provide support
without intersecting, also stretching when
required (the splitting off rails).

5.1 Preparing the curves

After the selection is made on what curves to
work on (by for loop) the curvature of both
curves need to be calculated. The straighter
curve will be used to project points from onto
the curved track.

The curvature is calculated by sweeping a line
across the curve and comparing the length of
each section in a VOPSOP. The values are
summed up and stored as a colour. These are
averaged, and the curve with the higher value,
therefore the most curved, kept separate.

5.1.1 Isolating the proper curves

The ties in the switch are treated in two ways,
the parts that have yet to intersect, and thus
are aligned with the straight curve (red), and
the parts that have intersected, and will not
intersect again bending along the track
(green).

To prevent any points to be projected on the
rail that will not be intersecting any more

 11

every second curve from the curved track gets
selected (red curves) at the intersection with
the inner most straight curve (violet).
The blue line is created (at 90 degrees to the
normal of the curved curve).

The other (curved) curves are cut by this
straight line to create a straight cut. After this
cut no beams will stretch towards it preventing
slanted ties. This means the green side will not
be using the complex positioning, as it will get
ties that follow the direction of the track. The
curves on the green side are resampled to get
a same number of points on both sides and
thus straight connections. An add node used to
create the lines between them.

Resulting in the following ties:

One half of the switch ties.

5.2 Creating the Ties

To finish the other half of the switch ties, the
straight curves are selected plus the other side
of the curved curves (the red side). The
straight curve is resampled and lines swept
along the curve, and all curves are
curvesected with the lines.

An add node is used to connect all the points,
and any curves with too long a length are used
to remove any unwanted geometry. Finally a
grid is swept along all lines to create the ties,
resulting in the following image:

The other half of the tie procedure

The bolts and details are added, and both
sections of ties are combined. The result is a
system that generates proper supports under
any angle.

5.3 Combining the results:

The two sections of the switcht ties are
combined and the solution below is created.

The final result of the switch tie procedure

The switchties are merged with each other and
with the rest of the procedure .

The results will be displayed in the following
chapter, displaying the procedure processing
various settings and utilising various input
curves , enabling an artist to set up an entire
railroad network in minutes. A task that would
be very labour intensive to do by hand and
would take several days depending on the
scale of the railroad.

 12

6. Combining the Results
A few screenshots of the complete procedure in action:

At the endings automatic train stops are created.

A birds eye view.

 13

A test with terrain implementation. The tracks curves created by my roommate to test for stability.

A close up of the rails revealing the bolts.

 14

7. Limitations and constraints

Below are listed a number of exceptions in which the procedure does not respond appropriately,
followed by a short explanation why.

Continuing curves:
As of yet the procedure does not support intersecting curves that both continue onwards. Practically
this means that at an intersection one curve must continue and the other must end. Support has been
removed for continuing curves, as the procedure proved unable to accurately predict what curves the
user wanted to keep and which ones to remove. Further research might improve upon this area as
comparing angles could potentially provide proper results. Self-intersection is also not supported.

Tangency:
In the tangency operation there is a small chance of failure. With a certain setup of curves it is possible
for the projected tangents to never cross (see image below). To solve this issue currently an average
of all intersection points is used as a backup. Also the user can choose to use the simple intersection
method which sometimes yields better results (chapter 2).

No intersection, therefore an average is used. The optimal curves, resulting in an S-shape.

A true proper solution should be researched, possibly into the lines of a 4 point curve as per the image
to the right. Using the vectors instead of an intersection point, another solution is to make the curves
coming into the circle always align to the normal of the circle.

Below is an example of the current solution and the error, Note the “kink” in the rails..

 15

7.1 guidelines

To utilize the Railroad procedure some things to be taken into account as a number of conditions do
need to be met to successfully generate a proper railroad. These conditions, although for the bigger
part also applying in real life, are the subject of further research in order to further improve the usability
of the asset.

A few basic guidelines while using the procedure are:

 at every intersection one railroad must continue another must stop. crossing intersections are
not currently supported. also ending both curves is not supported, nor is self-intersection

 two spheres for switch creation may not intersect where they cut a track, as two switches
cannot be generated in the same spot.

 the tracks must be fully split before they exit the spherical intersection to ensure proper Tie
placement. (outside the sphere the procedure falls back to normal tie placement)

if a problem with tangency occurs switching the curve generation method can help. However making
more space for the switch and making sure the normals intersect solves the problem.

 16

8 Literature

8.1 Tutorials

Procedural road creation ~ by Kim Goossens
Website; Video Tutorial: 3 parts.
Publisher: CMIVFX (03-03-2010)
Language: English
Source: www.CMIVFX.com

SIDEFX.com ~ by Various artists
Website; video tutorials
Publisher: SideFX Software
Language: English
Source: www.sidefx.com/index.php?option=com_content&task=blogsection&id=14&Itemid=132

Houdini Tutorials ~ by Peter Quint
Website, Vimeo Channel
Publisher: -
Language: English
Source: http://vimeo.com/channels/54102

8.2 Technical

Houdini Help File ~ by SideFX
Houdini source.
Publisher: SideFX
Language: English

8.3 Reference

Railroad construction theory and practice ~ by Walter Loring Webb
Hardcover: 312 pages ~ excluding tables. (196 pages)
Publisher: BiblioBazaar
Language: English
ISBN: 055996353X
ISBN-13: 9780559963537

Video game costs ~ VGcharts
Website; Internet article
Publisher; VGcharts
Language; English
http://vgsales.wikia.com/wiki/Video_game_costs

Special thanks go to:

Kim goossens: for introducing me to Houdini.
Andrew Paquette: for proofreading this dissertation
Tessa el Miligi: for proofreading this dissertation.

